Pandas is the de-facto standard for data manipulation in python, which I personally love for its flexible syntax and interoperability. But Pandas has well-known drawbacks such as memory in-efficiency, inconsistent missing data handling and lacking multicore-support. Multiple open-source projects aim to solve those issues, the most interesting is Polars.

Polars uses Rust and Apache Arrow to win in all kinds of performance-benchmarks and evolves fast. But is it already stable enough to migrate an existing Pandas' codebase? And does it meet the high-expectations on query language flexibility of long-time Pandas-lovers?

In this talk, I will explain, how Polars can be that fast, and present my insights on where Polars shines and in which scenarios I stay with pandas (at least for now!)

Nico Kreiling

Affiliation: scieneers

Nico is a Data Scientist at scieneers, co-organizer of PyData cologne meetup and host of the Techtiefen podcast. His passions are quick and simple solutions and the constant expansion of his and the communities' knowledge base.

visit the speaker at: Github